Crystal Structure of Potassium Ethyl Sulphate

BY J. A. J. JARVIS

Imperial Chemical Industries Limited, Research Laboratories, Hexagon House, Manchester 9, England

(Received 22 October 1952)

The crystal structure of potassium ethyl sulphate has been determined in order to establish whether a bond from sulphur to an oxygen atom which is also bonded to another atom is longer than that to an oxygen atom not so bonded.

Crystals of $K(C_2H_5)SO_4$ are monoclinic, space-group $P2_1/c$. The dimensions of the unit cell, which contains 4 molecules, are: a = 11.62, b = 6.99, c = 7.51 Å, $\beta = 100.3^{\circ}$.

Atomic coordinates were determined by three-dimensional Fourier methods, and corrections for termination-of-series errors were applied for the oxygen and sulphur atoms. Bond lengths in the ethyl sulphate radical are: $S-O_1 = 1.49$, $S-O_2 = 1.44$, $S-O_3 = 1.45$, $S-O_4 = 1.60$, $O_4-C_1 = 1.44$, $C_1-C_2 = 1.51$ Å. The bond between S and O_4 is significantly longer than that to the other O's, which are bonded to S only. Each K ion is surrounded by eight O atoms at distances ranging from 2.80 to 3.02 Å.

Introduction

The length of the S–O bond in many molecules and ions has been found to have a value close to 1.44 Å, which is rather shorter than the value to be expected for a double bond. An exception is the S–O bond in the ring of the cyclic S_3O_9 molecule, the length of which has been determined (MacGillavry & Westrick, 1941) as approximately 1.6 Å compared with 1.4 Å for the S–O bonds outside the ring. The crystal structure of potassium ethyl sulphate has been determined in order to confirm this difference between the lengths of bonds from S to (a) an O atom attached only to the S atom or (b) an O atom which is also bonded to a second atom.

The only previous X-ray work on ethyl sulphates of which we are aware is an incomplete study of some hydrated rare-earth ethyl sulphates (Ketelaar, 1937). The object of this study was to determine the symmetry of the atomic arrangement about the rare-earth ion, and S-O distances were assumed to be 1.50 Å, no attempt being made to refine this value.

Experimental

Large crystals, several millimetres across, tabular on (100) with $\{011\}$ as the principal boundaries, were grown by slow evaporation of a solution in a waterethanol mixture. Crystals suitable for X-ray photography about a, b, c and [011] axes were obtained by carefully dissolving away parts of large crystals to form cylinders, about 0.05 mm. in diameter, about these axes.

The dimensions of the unit cell are:

$$a = 11.62, b = 6.99, c = 7.51 \text{ Å}, \beta = 100.3^{\circ}.$$

With the measured density of 1.843 g.cm.⁻³, and molecular weight of 164, these dimensions show that there are four molecules of $K(C_2H_5)SO_4$ per unit cell. The only systematic absences are 0k0 for k odd, and h0l for l odd, from which the space group may be uniquely determined as $P2_1/c$.

The intensities of all reflexions observable with Cu $K\alpha$ radiation were recorded on equi-inclination Weissenberg photographs, which were taken by the method described by Stadler (1950). Layers 0, 1, 2 and 3 about the *a*, *b* and *c* axes, and 0, 1, 2, 3 and 4 about [011] were photographed; two exposures, of 20 hr. and 1 hr., were made of each layer, with three films superposed in the camera for each exposure.

Intensities (I) were estimated visually; after corrections for the rotation factor D had been applied, the values of $I \times D$ for the various layers about a given axis were put on the same scale by comparison of the zero-layer reflexions (Stadler, 1950) and finally all four sets of layers were correlated by comparison of common reflexions.

No correction was made for absorption, but the assumption, that the approximately cylindrical shape of the crystals used would render this unnecessary, seemed justified by the agreement obtained when a given reflexion was measured on photographs about two or more axes.

The values of $I \times D$ were corrected for the Lorentz polarisation factor (Goldstein & Pitt, 1948) to give values of $F^2(hkl)$ on an arbitrary scale. The method of Wilson (1942) was used to obtain the absolute scale and temperature factor ($B = 4 \times 10^{-16}$ cm.²). A total

Fig. 1. Potassium ethyl sulphate: b-axis projection. Heights and interatomic distances in Ångström units. Broken circles represent atoms in cell above.

of 908 independent structure-factor magnitudes was obtained.

Structure determination

A b-axis Patterson projection was calculated, but was insufficiently resolved to give even potassium and sulphur coordinates. After one or two trial structures had been tried without success it was decided to calculate three-dimensional Patterson sections. A section at y = 0.50 gave three prominent peaks which were interpreted as K-K and S-S vectors between atoms related by the screw axis, and a K-S vector between atoms whose y coordinates differed accidentally by about 0.5. This interpretation was confirmed on calculation of further sections at y = 0, 0.05, 0.10 and 0.15, which gave in addition approximate y coordinates for K and S, and x, y, z coordinates for the four oxygen atoms.

Structure-factor calculations based on these six atoms enabled enough signs to be determined among hk0 and h0l reflexions for the corresponding electrondensity projections to be calculated and partly refined. At this stage approximate coordinates x, y, z could be assigned to all eight atoms in the asymmetric unit, although in each projection overlapping precluded complete refinement. On the b-axis projection (Fig. 1, which gives the atoms in the positions obtained from the full three-dimensional analysis) the K and S atoms were too close to be resolved, and the large double peak rendered the x and z coordinates of the Oatoms uncertain. In the c-axis projection (Fig. 2), one O overlapped the K, while two O's and a C were so close to the glide plane at $y = \frac{1}{4}$ that it was difficult to determine their true y coordinates from the projection.

However, the approximate coordinates from the

 Table 1. Coordinates uncorrected for termination-of-series

6//0/8				
	\boldsymbol{x}	\boldsymbol{y}	z	
K	0.110	0.917	0.873	
S	0.159	0.069	0.419	
0,	0.068	0.196	0.460	
O_2	0.122	0.966	0.259	
0,	0.211	0.939	0.563	
O₄	0.261	0.212	0.396	
C ₁	0.360	0.129	0.339	
C,	0.446	0.284	0.335	

Table 2. Coordinates corrected for series termination

	\boldsymbol{x}	y	z
S	0.160	0.069	0.419
01	0.065	0.198	0.460
0_2	0.121	0.965	0.253
0,	0.212	0.939	0.564
O₄	0.261	0.215	0.395

Fig. 2. Potassium ethyl sulphate: c-axis projection.

hkl	F_o	F_{c}	hkl	F_o	F_{c}	hkl	F_o	F_{c}
100	99	107	406	< 4	4	540	7	5
200	26	-32	506	4	1	640	< 3	- 6
300	87	88	606	< 4	1	740	< 3	- 5
500	08 26	/1	806	3 5	2	840	< 3	— b
600	14	-15	906	5	4	10.4.0	4	— 3 — 4
700	10	12	106	< 4	$-\frac{1}{2}$	11.4.0	< 3	- 1
800	19	18	$20\overline{6}$	38	28	150	< 3	3
900	7	9	306	35	26	250	< 3	4
10,0,0	7	- 6		8	5	350	12	-13
12.0.0	- 4	0	506 506	97	- 6	450	14	17
13.0.0	< 4	3	706	32	-21 -28	650		3
14,0,0	$\overline{\langle 4}$	- 3	806	11	-14	750	17	18
002	28	28	90 <u>6</u>	10	10	850	19	20
102	122	116		12	11	950	3	4
202	37	42	11,0,6	15	13	10,5,0		- 8
402	22	26	108	10	10	12.5.0	14	- 13
502	6	5	208	ĩĩ	10	060	39	-41
602	29	-34	308	< 4	- 5	160	21	-24
702	23	-24	408	13	-13	260	8	8
802	9	- 9		21	-20	360	26	29
10.0.2	< 4		708	10	-13	400	19	24
11,0,2	4	— 5 — 5	808	20	16	660	4	- 3
12,0,2	9	12	908	14	11	760	9	-10°
13,0,2	7	8	10,0,8	6	6	860	8	- 5
102	67	-69	11,0,8	41	40	960	3	- 4
202	85	90 76	210	32	-30	170	7	4
$40\overline{2}$	10	- 70	410	2	- 3	370	12	10
$50\overline{2}$	36	41	510	$2\overline{2}$	23	470	4	5
$60\overline{2}$	43	50	610	7	9	570	< 4	1
702	13	11	710	15	20	670	4	- 4
802	19	-21	810	13	16	080	27	-24
$10.0.\overline{2}$	- 3	-32	10.1.0	9 15	9 	280	10	- 10
11,0,2	8	- 4	11,1,0	20	-17	380	18	17
$12,0,\bar{2}$	< 3	- 2	12,1,0	< 3	- 3	480	10	11
13,0,2	< 3	1	13,1,0	< 3	- 3	580	< 3	3
14,0,2	$< 3_{50}$	1	020	47	45	680	5	- 4
104	< 3	-47	220	26		012	40 45	-40 -45
204	44	36	320	59	$-\overline{61}$	013	36	-29
304	23	19	420	63	-58	014	22	-22
404	12	19	520	4	- 5	015	5	4
504 604	< 4	3	620 720	27	24	016	11	-12
704	< 4	- 1	820	9	13	018	< 5	21 0
804	7	8	920	4	12	021	61	62
904	< 4	-2	10,2,0	6	12	022	10	- 6
10,0,4	.9	-10	11,2,0	5	- 5	023	73	76
11,0,4	15	-14	12,2,0	< 3	- 3	024	5	- 5
104	28	-23	230	43	-36	025	16	-16
$20\overline{4}$	23	-15	330	24	-27	027	$<\tilde{4}$	-2
$30\overline{4}$	17	14	430	29	-26	028	< 4	1
404	19	14	530	35	-38	031	4	7
504 604	34 90	20 19	03U 730	22	20	032	23	21
704	20	-19	830	33	34	035	29	3
804	42	-38	930	7	8	035		1
$90\overline{4}$	13	-13	10,3,0	14	-17	036	24	
10,0,4	9	12	11,3,0	17	-21	037	3	3
11,0,4 1907	6	7	12,3,0	11	-12_{e}	041	25	27
006	9 25	-21	140	í Q	0 9	042	4 44	- 4 49
106	35	-33	240	5	- 4	044	15	14
206	7	5	340	< 3	3	045	5	- 8
306	15	18	440	20	22	046	5	- 3

hkl	F_{o}	Fc	hkl	Fo	Fc	hkl	F_o	F _c
047	6	- 7	057	12	- 9	072	14	-11
048	< 2	- 2	061	< 3	2	073	16	15
051	14	11	062	8	-11	074	7	- 6
052	11	-10	063	25	22	075	9	— 5
053	12	8	064	24	23	081	14	-11
054	23	-20	065	8	7	082	10	-10
055	7	6	066	10	7	083	12	-11
056	8	- 6	071	12	8	084	7	8

projections enabled the signs of about 500 F(hkl) structure factors to be determined, and these were included in syntheses of electron density along lines parallel to the *b* axis and sections parallel to (010) through the positions indicated by the projections. Recalculation of structure factors from the new coordinates made possible the determination of 664 signs, and a second set of syntheses was calculated.

The third and final set of lines and sections, including 875 out of the 908 observable reflexions, gave the coordinates listed in Table 1. Structure factors calculated from these gave a disagreement factor $(R = \Sigma |F_o - F_c| \div \Sigma |F_o|)$ of 0.177; on multiplying the F_c by exp (Bk^2/b^2) , corresponding to the introduction of an asymmetric temperature factor, the value of Rwas reduced to 0.138.

The coordinates of Table 1 give the following bond lengths within the ethyl sulphate radical:

$$S-O_1 = 1.48$$
 Å, $S-O_2 = 1.39$ Å, $S-O_3 = 1.44$ Å, $S-O_4 = 1.60$ Å, $O_4-C_1 = 1.44$ Å, $C_1-C_2 = 1.51$ Å.

Although the S-O₄ bond is longer than the other S-O bonds the comparison is made less convincing by the divergence these show among themselves, since one would expect them to be equivalent. However, in a structure containing two comparatively heavy atoms, K and S, there may well be diffraction effects which would displace the O and C electron-density peaks. A correction for termination of series was applied, as suggested by Booth (1945), to the coordinates of the oxygen and sulphur atoms. The corrections were mostly of the order of 0.01 Å, except for the x coordinate of O₁ (0.03 Å) and the z coordinate of O₂ (0.04 Å).

The corrected coordinates are given in Table 2. The bond lengths calculated from these are:

$$S-O_1 = 1.49 \text{ Å}, S-O_2 = 1.44 \text{ Å}, S-O_3 = 1.45 \text{ Å}, S-O_4 = 1.60 \text{ Å}.$$

Since the corrected coordinates differ by so little from the previous ones it was not considered profitable to recalculate the structure factors. The values for the three principal zones listed in Table 3 were calculated from the coordinates of Table 1.

Description of structure

The structure consists of layers parallel to (100). In each layer the ethyl sulphate ions have their polar (sulphate) ends directed inwards, being held by electrostatic interaction with the potassium ions, while adjacent layers make contact only through the van der Waals approaches of the methyl groups terminating the outwardly directed non-polar ends of the ions. A similar double-layer structure is found in the salts of long-chain fatty acids. Each potassium ion has eight oxygen atoms, as nearest neighbours at distances between 2.80 and 3.02 Å, belonging to the six surrounding ethyl sulphate ions. At the other ends of these ions the methyl group has two neighbours at 3.80 Å in the same layer, and four in the next layer, at 3.90, 3.97 (2) and 4.40 Å.

The bond lengths within the ethyl sulphate ion are:

The mean of the bond lengths $S-O_1$, $S-O_2$ and $S-O_3$ is 1.46 Å with a maximum divergence of 0.03 Å from the mean, which agrees well with the results of other investigations (Wells, 1950). The bond lengths C_1-O_4 and C_1-C_2 are also within 0.03 Å of accepted values, so that the value of 1.60 Å for $S-O_4$ appears to be significantly longer than the other S-O bonds. Other interatomic distances are:

Bond angles at the sulphur atom are:

References

BOOTH, A. D. (1945). Proc. Roy. Soc. A, 188, 77.

- GOLDSTEIN, G. H. & PITT, G. J. (1948). J. Sci. Instrum. 25, 397.
- KETELAAR, J. A. A. (1937). Physica, 4, 619.
- MACGILLAVRY, C. H. & WESTRICK, R. (1941). Rec. Trav. chim. Pays-Bas, 60, 794.
- STADLER, H. P. (1950). Acta Cryst. 3, 262.
- WELLS, A. F. (1950). Structural Inorganic Chemistry, pp. 332–334. Oxford: Clarendon Press.
- WILSON, A. J. C. (1942). Nature, Lond. 150, 152.